Pearl Condominiums 9th & Arch Street Philadelphia, PA

Structural Option

Technical Assignment #2

Structural Concepts / Structural Existing Conditions Report

October 29, 2007

Faculty Advisor: Dr. Linda Hanagan

Joseph G. Lichman Jr.

http://www.engr.psu.edu/ae/thesis/portfolios/2008/jgl138/

Table of Contents

Executive Summary	2
Introduction	3
Existing Floor Framing	4
Alternate Structural Systems Non-Composite Steel Framing Composite Steel Framing Two Way Flat Slab with Drop Panels Precast Beams with Hollow Core Planks	5 5 6 7 8
Comparison & Conclusion	9
Appendix	A1

Executive Summary

The purpose of Technical Assignment #2 is to investigate alternative structural floor systems for the existing hollow core plank system used in the Pearl Condominiums. After the investigation of these systems, I will do a comparative analysis to see which of these solutions are viable based on numerous economic, construction and structural criteria.

Existing System:

The existing floor system is comprised of a 10" Precast Concrete Plank with a ³/₄" concrete thick topping. Theses planks are supported by 8" metal stud bearing walls.

Alternative Systems:

Four alternative systems were investigated as alternative for Pearl Condominiums:

- 1. Non-Composite Steel Framing
- 2. Composite Steel Framing
- 3. Two Way Slab with Drop Panels
- 4. Precast Beam with Hollow Core Planks

Conclusion:

After analyzing the four alternative systems it has been determined that the existing floor system was the correct choice for Pearl Condominiums. The precast floor planks work well for use in long spans and the metal stud bearing wall type is easy to construct and is also used to resist lateral forces.

During the analysis, the non-composite and the two way slab with the drop panel were found not to work as well in this situation as the other two possible alternative systems. This is the result from the high total depths and the time needed to construct each floor. The precast beams and hollow core planks work well as long as there is no restriction on overall depth. Also the precast concrete planks can span a greater length while having a shorter depth than a steel beam with a concrete slab. Overall the best system out of the alternative possibilities was the composite steel framing system. The formwork and shoring is minimal because of the metal floor deck. Also the ability for an open floor plan possibility is greater because of the limited reliance on load bearing walls. While these two alternatives performed well enough to be researched further, I feel that the current hollow core planks with metal stud bearing walls as the floor system of the building is the best solution for the structure.

Introduction

Pearl Condominiums is a mixed use development housing including 10 retail units on the ground floor and 90 condominium units on the upper floors. The gross floor area is 111,570 square feet and has 6 stories above grade. The start of construction was March 30, 2006 and the finish date is October 2007. The zoning is C-4 Commercial. Design considerations for the site included the site location existing above a SEPTA commuter rail tunnel.

In this report I will study the typical floors above the second level. On these levels the code required live load is 60 psf. This live load matches the engineer's choice for the project. The engineer also required a superimposed dead load of 25 psf accounting for partitions, MEP and flooring. This is a conservative dead load based on the code required for partitions is 12 psf. This results in 13 psf left for flooring and MEP, which usually can range from 3 to 8 psf depending on the type of flooring. These loads will be used in the analysis of the alternative systems throughout this report.

Structural Codes:

- Building Code Philadelphia Building Code 2003. The Philadelphia Building Code 2003 is an adoption of the IBC 2003 with city amendments.
- Structural Concrete ACI 318-02 Building Code Requirements for Structural Concrete
 - Concrete Masonry

ACI 530-02 Building Code Requirement for Masonry Structures

• Structural Steel

American Institute of Steel Construction (AISC)

LRFD Specification for Structural Steel Buildings - Latest Edition

• Structural Cold Formed Studs

Specification for the Design of Cold Formed Structural Members

Existing Structural Systems

Foundations:

The primary support for the foundation is the use of drilled piers. The drilled pier option was performed, so the loads from the building would be transferred from the pier to the soil below the SEPTA commuter train tunnel. If a shallow foundation system was chosen, special precautions to not disturb the area around the tunnel would have been needed to be performed. The drilled piers range in size of diameter from 3'-0" to 3'-6" to 4'-0". They also range in depth depending on the rock elevations in the area as described in the geotechnical report.

To help distribute the load to the drilled piers the use of grade beams was employed. They range in width from 12" to 40" and in depth from 18" to 30". The slab on grade is 6" reinforced with 6x6 W2.9xW2.9 WWR over 6" crushed stone over 6 mil. Vapor retarder.

<u>Columns \ Load Bearing Walls:</u>

The columns used on the ends of the building are HSS tube columns sizes of 6"x6" and 8"x8" with varying thickness. Wide flange shapes are also used in select interior spaces ranging from W10X39, W10X49, W12X53, W12X120 and W30X90. The load bearing walls are comprised of 8" metal stud spaced at 16" and 12" on center.

Floor System:

The floor system for level 2 thru 6 is comprised of a 10" Precast Concrete Plank with a ³/₄" concrete thick topping. The concrete strength of the precast plank is f'c equals 5,000 psi. The plank has a maximum span of 34'-9".

Level two acts as a transfer level, which requires the use of wide flange beam (W36) to be implemented around the area near the Open Entry Drive on the first floor. These beams help to distribute the load from this area and down into the foundation.

Lateral Resisting System:

The Lateral System in the building is comprised of two types: concrete masonry unit shear walls and metal stud shear wall. The concrete masonry unit shear walls are used around the elevator and stairway towers. These walls range from thickness of 10" in the stair areas and 12" in the elevators. The strength of the concrete masonry units (f'm) range from 1500 psi to 2000psi and 3000psi depending on the area they are used in.

The metal stud shear walls are composed of 8" metal studs varying in thickness. The two heights of the studs are 13'-8" and 9'-0". Metal diagonal straps connected by #12 screws to the metal studs and 7/8" diameter anchor bolts connected through different boot types help to resist the lateral forces applied to the metal studs. The metal Studs are covered by gypsum wall board.

Alternative #1: Non-Composite Steel Framing

Designed Used: RAM

The First framing system considered was a non-composite steel framing system. This system consists of a 4" normal weight concrete slab placed on a 2" UF2X 20 Gauge Form Deck.(See A3) This metal deck spans 6' across W12x14 joists which frame into W18x40 girders. (See A2 for framing plan)

Pros:

- Quick Erection Time
- Simplified erection process (Simple Connections)
- Reduced weight compared to concrete systems

- Increase in depth from 10-3/4" to 21-7/8"
- Material cost increase because of increase in member depth, size and quantity
- Require additional fireproofing
- Increased lead time for steel compared to concrete

Alternative #2: Composite Steel Framing

Designed Used: RAM

The Second framing system considered was a composite steel framing system. This system consists of a 6" normal weight concrete slab placed on a 3" LOK-Floor 20 Gauge Form Deck. (See A5) This metal deck spans 6' across W8x10 joists which frame into W14x22 girders. (See A4 for framing plan) The composite action is facilitated by $\frac{3}{4}$ "Ø shear studs with length 4.5 in.

Pros:

- Added flexural resistance from the use of shear studs
- Depth of steel beams reduced compared to non-composite
- Vibration action with this system is reduced

- Increase in depth from 10-3/4" to 19-3/4"
- Require additional fireproofing
- Increased lead time for steel compared to concrete
- With this system larger spans require the beam to be cambered or increase the depth

Alternative #3: Two Way Slab with Drop Panels

Designed Used: CRSI Handbook

The Third framing system considered was a two way slab with drop panels. This system has a span of 33' which requires a depth of 12" for the slab between drop panels. The edge panel drop panel size is 11.33 ft and a depth of 11 in. The edge panel column to support this two way system is 17"x17". (See A-6)

Pros:

- No added requirement for fireproofing
- Short lead time for concrete
- Vibration action with this system is minimal

- Increase in depth from 10-3/4" to 23" at drop panel and 12" between drop panels
- Larger walls thickness to hide increase in column size from 8" stud to 12" for concrete column
- Increase in system weight, increase seismic shear force
- Required amount of formwork and shorting increased

Alternative #4: Precast Beams and Hollow Core Planks

Designed Used: PCI Handbook Sixth Edition

The Fourth framing system considered was a combination of precast beams and hollow core planks. This system is composed of precast columns, L-shape and inverted t-shape beams, and hollow core planks. Hollow core planks span 17' which requires a minimum depth of 6" with a 2" concrete topping. To make the planks compatible floor height with the beams, the planks need to be thickness of 10" and a 2" topping cover. (See A7)

The two types of beams that are used in this alternative system are the L-shape and inverted T-shape. (See A8&9 for dimensions) The purpose of this system was to compare the use of hollow core planks bearing on stud walls and precast beams.

Pros:

- No added requirement for fireproofing
- Vibration action with this system is minimal
- Open floor plans with use of precast beams compared to stud bearing walls
- Minimal formwork and shorting

- Longer lead time than typical concrete construction
- Precast concrete beams (24") are deeper than required for steel construction (11-7/8")
- Increase in weight, which will increase in seismic shear force

Criteria	Hollow Core	Non-	Composite	Two Way	Precast
	Planks\Metal	Composite	1	Slab W\ Drop	Beams
	Stud Wall	1		Panel	Hollow Core
					Planks
Cost/SF	18.12	20.30	21.65	18.50	22.35
Slab Depth	10-3/4"	4"	6"	12"	12"
Total Depth	10-3/4"	21-7/8"	19-3/4"	23"	24"
Added Fire	Yes	Yes	Yes	No	No
Protection					
Vibration	Average	Average	Average	Above	Above
Issue				Average	Average
Long Lead	Yes	Yes	Yes	No	Yes
Time					
Form Work	No	No	No	Yes	No
Construction	Easy	Easy	Medium	Medium-Hard	Easy
Difficulty					
Fast Erection	No	Yes	Yes	No	Yes
Time					
Foundation	-	Yes*	Yes*	Yes	Yes
Impact					
Lateral	-	Yes	Yes	Yes	Yes
System Effect					
Viable	-	No	Yes	No	Yes
Solution					

Comparison & Conclusion

* With steel construction, the building weight has the possibility for a reduced building weight

Conclusion:

After analyzing the four alternative systems it was clear that the existing floor system was the correct choice for Pearl Condominiums. The precast floor planks work well for use in long spans and the metal stud bearing wall type is easy to construct and is also used to resist lateral forces.

From the four alternatives, the best system from my analysis was the Composite steel framing. One of the main reason was the overall depth out of the four was the least. Even though the cost per square foot is the second largest, the overall weight will be less and the ability for open floor plans will be increased. This is possible because of the implementation of a column grid instead of metal stud load bearing walls.

Appendix

Typical Bay Framing

Alternative #1: Non-Composite Steel Framing

Pearl Condominiums Philadelphia, PA

		SECTIO	N PROPE	RTIES			ASD			💼 LRFD	
	Metal Thickn	ess Wt.	I,	S,	S,	v	R ₁	R ₂	φV	¢R,	¢R2
Ga	age Inch	es (psf) (in.4)	(in.3)	(in.3)	(lbs)	(lbs)	(ibs)	(ibs)	(lbs)	(lbs)
2	24 0.02	39 1.50	0.232	0.192	0.200	2360	360	836	3223	532	1156
2	22 0.02	95 2.00	0.300	0.252	0.263	4205	528	1484	5477	736	1992
2	20 0.03	58 2.00	0.379	0.325	0.339	6062	728	2224	8067	1004	3064
1	18 0.04	74 3.00	0.523	0.468	0.485	8796	1204	3948	11182	1648	5388
	UF2X		2"	2"	\vdash	30" cover			≯ Th fiai ac sh	e bottom nge can cept a ¾" ear stud.	
					¥	6" pitch			approx.	scale: 1½" =	1'0"
		Chan U	NIFORM I	DIAL LOAD	/ Load tha	t Produces	Snan	ection, pst			
	Gage	Span Condition	6'0"	6'6"	7'0"	7'6"	8'0"	8'6"	9'0"	9'6"	10'0'
		Single	128/94	109/74	94/59	82/48	72/40	64/33	57/28	51/24	46/20
	21	Double	130/226	111/178	96/143	84/116	74/96	66/80	59/67	53/57	48/4
		Triple	162/177	138/139	120/112	105/91	92/75	82/62	73/52	66/45	59/38
		Single	168/122	143/96	123/77	108/62	94/51	84/43	75/36	67/31	60/20
	22	Double	173/293	148/230	128/184	111/150	98/123	87/103	78/87	70/74	63/63
Q		Triple	215/229	184/180	159/144	139/117	122/97	108/81	97/68	87/58	78/49
2		Single	217/154	185/121	159/97	139/79	122/65	108/54	96/46	86/39	78/3
	20	Double	224/370	191/291	165/233	144/189	126/156	112/130	100/110	90/93	81/8
		Triple	279/289	238/228	205/182	179/148	158/122	140/102	125/86	112/73	101/6
		Single	312/212	266/167	229/133	200/109	176/89	155/75	139/63	124/53	112/4
	18	Double	320/510	273/401	236/321	206/261	181/215	160/179	143/151	128/129	116/11
		Triple	399/399	340/314	294/252	256/204	226/168	200/140	179/118	160/101	145/8
		Single	177/94	164/74	149/59	130/48	114/40	101/33	90/28	81/24	73/20
	24	Double	154/226	142/178	132/143	123/116	116/96	104/80	93/67	83/57	75/4
		Triple	175/177	162/139	150/112	140/91	131/75	124/62	115/52	103/45	94/3
		Single	245/122	226/96	195/77	170/62	150/51	133/43	118/36	106/31	96/2
•	22	Double	266/293	233/230	201/184	176/150	155/123	137/103	122/87	110/74	99/6
		Triple	302/229	279/180	250/144	218/117	192/97	171/81	152/68	137/58	124/4
2		Single	335/154	292/121	252/97	220/79	193/65	171/54	152/46	137/39	124/3
-	201	Double	353/370	301/291	260/233	227/189	200/156	177 / 130	158/110	142/93	128/8
		Triple	418/289	375/228	324/182	283/148	249/122	221/102	197/86	177/73	160/6
	4	Single	494/212	421/167	363/133	316/109	278/89	246/75	220/63	197/53	178/4
	18	Double	505/510	431/401	372/321	325/261	286/215	253/179	226/151	203/129	183/11
		Trinlo	627/300	536/31/	463/252	4047204	356/168	316/140	282/118	253/101	220/8

USD - UF2X Metal Form Deck

Alternative #2: Composite Steel Framing

USD - 3" LOK-Floor Deck

3 x 12" DECK F_y = 33ksi f'_e = 3 ksi 145 pcf concrete

						L,	Unifor	m Live	Loads	i, psf *					
	Slab Depth	φMn in.k	9.00	9.50	10.00	10.50	11.00	11.50	12.00	12.50	13.00	13.50	14.00	14.50	15.00
3985	5.50	52.80	235	205	180	160	145	130	115	105	95	85	75	65	60
0	6.00	59.89	265	235	205	185	165	145	130	120	105	95	85	75	70
Ø	6.50	66.97	300	265	230	205	185	165	145	130	120	105	95	85	75
Ũ	7.00	74.05	330	290	255	230	205	180	165	145	130	120	105	95	85
0)	7.50	81.13	360	320	280	250	225	200	180	160	145	130	115	105	95
N	8.00	88.22	395	345	305	275	245	220	195	175	155	140	125	115	105
N	8.25	91.76	400	360	320	285	255	225	205	180	165	145	135	120	105
	8.50	95,30	400	375	330	295	265	235	210	190	170	155	140	125	110
	5.50	62.81	285	250	225	200	180	160	145	130	115	105	95	85	80
I ₫	6.00	71.37	325	285	255	225	205	185	165	150	135	120	110	100	90
9	6.50	79.92	365	320	285	255	230	205	185	165	150	135	125	110	100
1 M	7.00	88.48	400	355	315	285	255	225	205	185	165	150	135	125	110
	7.50	97.03	400	390	350	310	280	250	225	205	185	165	150	135	125
0	8.00	105.59	400	400	380	340	305	270	245	220	200	180	165	150	135
N	8.25	109.87	400	400	395	350	315	285	255	230	210	190	170	155	140
2	8,50	114,15	400	400	400	365	330	295	265	240	215	195	180	160	145
	5.50	72.04	335	295	260	235	210	190	170	155	140	125	115	105	95
<u>0</u>	6.00	82.00	380	335	300	265	240	215	195	175	160	145	130	120	110
9	6.50	91.95	400	375	335	300	270	245	220	200	180	165	150	135	125
1 M	7.00	101.91	400	400	375	335	300	270	245	220	200	180	165	150	135
	7.50	111.87	400	400	400	365	330	295	270	240	220	200	180	165	150
0	8.00	121.83	400	400	400	400	360	325	290	265	240	220	200	180	165
-	8.25	126.81	400	400	400	400	375	335	305	275	250	225	205	190	170
0	8,50	131.78	400	400	400	400	390	350	315	285	260	235	215	195	180
	5.50	80.96	380	335	300	270	240	215	195	180	160	145	135	120	110
0	6.00	92.32	400	385	340	305	275	250	225	205	185	170	155	140	130
Ø	6.50	103.68	400	400	385	345	310	280	255	230	210	190	175	160	145
Ū	7.00	115.04	400	400	400	385	345	310	280	255	230	210	195	175	160
0)	7.50	126.40	400	400	400	400	380	340	310	280	255	235	210	195	180
00	8.00	137.76	400	400	400	400	400	375	340	305	280	255	230	210	195
-	8.25	143.44	400	400	400	400	400	390	350	320	290	265	240	220	200

1 STUD/FT.

* The Uniform Live Loads are based on the LRFD equation $\phi M_n = (1.6L + 1.2D)/^2/8$. Although there are other load combinations that may require investigation, this will control most of the time. The equation assumes there is no negative bending reinforcement over the beams and therefore each composite slab is a single span. Two sets of values are shown; ϕM_{rf} is used to calculate the uniform load when the full required number of studs is present; ϕM_{ro} is used to calculate the load when no studs are present. A straight line interpolation can be done if the average number of

	88888	888888	ω ω <mark>ω</mark> ω	យ យ	222222	33333	88888		(II) (II)	0,-0.	SPA	G at
-	40000	400	40000	500000	500000	500000	500 400		2 (psf	pose	Factor	rade
1	1111	2222	2222	33333	22229	11199	110 110 110) Dep (in	- a :	S S	4,000 60 B
	4222	20000	00000	100000 101111	12 10 10	12100	12 10 10) (f	Panel	ware Dro	ars
	4888	67 67 00	8222	228888	67 67 80	82222	88888	h =	0 00	5		-
_	14 29 36	19 26 33	12 17 24 30	228 226 228	30 30	12 19 22 27	12 19 24 24	12 in.	Size (In.)	quare C	(3)	
	0.767 0.760 0.704 0.660	0.795 0.752 0.715 0.706	0.752 0.767 0.699 0.700	0.678 0.743 0.747 0.721 0.680	0.794 0.640 0.757 0.729 0.718	0.729 0.766 0.683 0.749 0.755	0.808 0.707 0.763 0.661 0.766	= TOT/	Ϋ́	olumn		S
	16.#5 6 20.#5 7 17.#6 5 27.#5 5	16.#5 6 18.#5 6 18.#6 5	16.#5 4 17.#5 6 20.#5 4 17.#6 3	15-#5 19-#5 17-#6 17-#6 3	15-#5 5 17-#5 6 20-#5 5 16-#6 4	14-#5 2 15-#5 4 15-#6 4	14-#5 3 16-#5 5 19-#5 6	AL SLAB	Top Ext. +	Col	п	QUARE
	13-#9 17-#10 17-#10	12-#9 19-#8 15-#10 18-#10	14-#8 14-#9 17-#9 17-#10	16-#7 13-#9 13-#10 15-#10 17-#10	11,#8 12,#9 18,#8 14,#10 16,#10	13,#7 13,#8 19,#8 18,#9	12-#7 15-#7 12-#9 17-#8 13-#10	DEPTH	Bottom	umn Strip	EINFO	FL/
	22.#6 16.#9 18.#9	16.#7 16.#8 18.#8 17.#9	19.#6 18.#7 17.#8 19.#8	17.弗 16.弗7 18.弗8 18.弗8	17.#6 15.#7 18.#7 16.#8 15.#9	16.#6 15.#7 15.#8 14.#9	16.#6 18.#6 22.#6 14.#8 16.#8	BETWEE	Top Int	(1)	RCINC	PANE No
	14.#7 14.#8 13.#9	13 <i>-#</i> 7 16 <i>-#</i> 7 12 <i>-</i> #9 14 <i>-</i> #9	12-#7 12-#8 14-#8 13-#9	14-#5 18-#5 12-#5 11-#10	13-#6 13-#7 12-#8 11-#9 13-#9	16-#5 11.#7 18-#6 16-#7 12-#9	15#5 10#7 12#7 11#8 13#8	EN DROF	Bottom	Midd	BARS	AB S EL Beam
	12-#7 12-#8 14-#8 13-#9	14-#6 18-#6 22-#6 12-#9	13-#6 13-#7 12-#8 14-#8	12-#6 15-#6 11-#8 16-#7 14-#8	15#5 19#5 13#7 13#8	14-#5 13-#6 18-#6 12-#8	13-#5 11-#6 19-#5 12-#7 11-#8	PANEL	Top Int	e Strip	(E. W.	Witl s
1	4.17 5.45 7.67	3.95 4.98 6.24 7.34	3.74 4.83 7.00	555 555 7.47	3.33 4.27 5.16 7.14	3.12 3.96 5.68 6.78	3.10 3.65 4.62 6.20	S.	Steel (psf)	Total	U	1 Drop
	451.1 573.5 686.8 793.0	415.9 528.2 636.9 734.7	380.6 485.4 584.8 681.2	347.3 443.7 537.1 628.5 705.8	314.9 403.4 575.3 651.1	285.7 364.7 522.9 599.3	257.4 329.4 401.5 473.2 545.2		(ft-k)	Edge	z	Panel
i never i	902.3 1147.0 1373.6 1586.1	831.9 1056.4 1273.8 1469.4	761.2 970.8 1169.6 1362.3	694.7 887.5 1074.2 1257.0 1411.6	629.9 806.8 981.3 1150.7 1302.2	571.4 729.3 888.7 1045.8 1198.5	514.8 658.8 946.3 1090.4		(†) (ft-k)	Bot.	IOMEN	S
	1214.6 1544.0 1849.1 2135.1	1119.8 1422.1 1714.8 1978.1	1024.7 1306.8 1574.5 1833.9	935.1 1194.7 1446.0 1692.2 1900.3	847.9 1086.1 1321.0 1549.0 1752.9	769.2 981.8 1196.4 1407.8 1613.4	693.0 886.8 1081.0 1273.9 1467.9		(†) (ft-k)	P.	TS	
100	100 200	100 200 400	100 200 400	500 500	100 200 400 500	100 200 500	100 200 400 500	h = 1	Load (psf)	posed	Factored	
5	225 13 12	8235	29 29	33 66 23 <mark>19</mark> 12	12 23 20 30	12 19 23 27	12 19 22 27	2 in. = T	Size (in.)	- Square	(3)	QS
04.41	16.#7 37.#5 18.#8	19-#6 18-#7 17-#8 16-#9	18-#6 22-#6 16-#8 18-#8	16.#6 15.#7 18.#7 17.#8	16#6 26#5 15#8 17#8	20-#5 26-#5 16-#8	15-#6 23-#5 15-#7 16-#7 14-#8	OTAL S	Тор	Colum	REI	UARE
10-11-10	14-#7 14-#8 17-#8	17-#6 22-#6 20-#7 18-#8	22-#5 15-#7 14-#8 14-#9	14-#6 18-#6 12-#9 11-#1	18-#5 17-#6 15-#7 11-#9 13-#9	12-#6 11-#7 18-#6 16-#7 12-#9	15-#5 19-#5 17-#6 11-#8 13-#8	LAB DEF	Bottom	In Strip	VFORC	th Dro No B
04.71	20-#5 14-#7 22-#6	13-#6 13-#7 12-#8 14-#8	12:#6 12:#7 14:#7 22:#6	11.据 14.据 13.据	14-#5 12-#7 12-#8	13-#5 14-#6 13-#7	13-#5 10-#7 10-#8	OTH BE	Top	Midd	ING B	ERIO p Pane eams
04.27	17-#5 12-#7 14-#7	16-#5 20-#5 13-#7 12-#8	15-#5 13-#6 12-#7 14-#7	14-#5 12-#6 11-#7 13-#7 11-#8	14-#5 15-#5 12-#7 18-#6	13-#5 14-#5 12-#6 13-#7	13-共5 15-共5 18-共5	IWEEN	Bottom	e Strip	ARS (E	
0.04	3.58 5.68	3.32 5.43 6.42	3.16 5.15 6.07	2.97 3.82 4.71 5.74 6.52	2.90 3.57 5.37 6.12	2.78 3.41 4.98 5.93	2.82 3.16 4.02 5.31	DROP P	Steel (psf)	Total	. W.)	VEL
		11100	1.10	1.10	1.108 1.108	1.08 1.10 1.10	1.06 1.108	ANELS	sq. f	Concre	_	

Alternative #3: Two Way Slab with Drop Panels

4

Alternative #4: Precast Beams and Hollow Core Planks

Hollow Core Planks

Table of safe superimposed	service	load	(nsf)	and	cambers	(in	۱

Table of sa	fe s	upe	rim	pos	ed s	serv	vice	loa	d (p	sf)	and	ca	mbe	ers ((in.)									ľ	No T	opp	oing
Strand													S	pan,	ft				_					_		_	_
Code	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
	258	234	209	187	168	151	136	123	111	100	90	82	74	66	60	54	48	43	38	34	30	26					
48-S	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.1	0.1	0.0	-0.1	-0.2	-0.3	-0.4	-0.6	-0.7	-0.9					
	0.4	0.4	0,4	0.4	0.4	0.4	0.3	0,3	0.2	0.2	0.1	0.0	-0.1	-0.2	-0.3	-0.5	-0.7	-0.8	-1.1	-1.3	-1.3	-1.9					
	267	249	237	223	211	197	179	162	148	134	122	112	102	93	85	77	70	64	58	53	48	43	39	35	30	26	
58-S	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.3	0.2	0.2	0.1	0.0	-0.1	-0.3	-0.4	-0.6	-0.7	-0.9	-1.2	
	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.4	0.3	0.2	0.1	0.0	-0.1	-0.3	-0.5	-0.7	-1.0	-1.2	-1.5	-1.8	-2.2	-2.6	
	273	255	243	229	217	206	196	187	176	162	153	141	129	118	109	100	92	84	78	71	65	60	54	49	44	39	34
68-S	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.5	0.5	0.4	0.3	0.2	0.1	-0.1	-0.2	-0.4	-0.6	-0.8
	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.9	0.9	0.8	0.8	0.8	0.7	0.7	0.6	0.5	0.4	0.2	0,1	-0.1	-0.3	-0.6	-0.8	-1.1	-1.4	-1.8	-2.2
	282	264	249	235	223	212	202	193	185	174	165	153	144	136	129	119	113	104	96	89	82	76	69	63	57	52	47
78-S	0.6	0.7	0.7	0.7	0.8	0.8	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	0.9	0.9	0.9	0.8	0.8	0.7	0.6	0.5	0.4	0.3	0.1	0.0	-0.2
	0.8	0.9	0.9	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.0	1.0	0.9	0.8	0.6	0.5	0.3	0.1	-0.1	-0.4	-0.7	-1.0	-1.3
	288	270	255	241	229	218	208	199	188	180	174	165	153	145	135	128	122	115	106	101	96	91	84	77	71	65	59
88-S	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.1	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.1	1.1	1.0	0.9	0.8	0.7	0.5	0.3
	1.0	1.0	1.1	1.2	1.2	1.3	1.3	1.4	1.4	1.4	1.4	1.5	1.5	1.4	1.4	1.4	1.3	1.2	1.2	1.0	0.9	0.7	0.6	0.3	0.1	-0.2	-0.5

4HC10 + 2

4HC10

Strand													S	oan,	ft												
Designation Code	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
48-S	308 0.3	287 0.3	256 0.3	228	204	183 0.3	165 0.3	148	133	119	107	96 0.2	86 0.1	74	63 0.0	52 -0.1	43	34 -0.3	26 -0.4								
58-S	317 0.4 0.4	298 0.4 0.4	282 0.4 0.4	267 0.5 0.4	252 0.5 0.4	237 0.5 0.4	219 0.5 0.4	198 0.5	180 0.5	163 0.5	148 0.5	134 0.4	120 0.4	105 0.4	92 0.3	-1.0 80 0.2	-1.2 69 0.2	-1.4 59 0.1	-1.7 50 0.0	41	33 -0.3	26 -0.4					
68-S	326 0.5 0.5	307 0.5 0.6	291 0.6 0.6	273 0.6 0.6	258 0.6 0.6	246 0.7 0.6	234 0.7 0.6	222 0.7 0.6	212 0.7 0.5	202 0.7 0.5	188 0.7 0.4	171 0.7 0.4	153 0.7 0.3	137 0.7	122	108	96 0.5	84 0.5	74	64 0.3	55 0.2	46	38	31 -0.2			
78-S	335 0.6 0.7	313 0.7 0.7	297 0.7 0.7	279 0.7 0.8	267 0.8 0.8	252 0.8 0.8	240 0.9 0.8	228 0.9 0.8	218 0.9 0.8	208 0.9 0.8	196 0.9 0.7	189 1.0 0.7	181 1.0 0.6	165 1.0 0.5	150 0.9 0.4	135 0.9 0.3	122	109	97 0.8	86 0.7	76	67 0.5	58 0.4	50 0.3	42	35 0.0	28
88-S	344 0.7 0.8	322 0.8 0.8	306 0.8 0.9	288 0.9 0.9	273 0.9 1.0	258 1.0 1.0	246 1.0 1.0	234 1.1 1.0	221 1.1 1.0	211 1.2 1.0	202 1.2 1.0	195 1.2 1.0	184 1.2 0.9	178 1.2 0.9	172	158 1.2 0.7	144 1.2 0.6	130 1.2 0.4	118 1.2 0.3	107	96 1.1	87 1.0	77	68 0.8	60 0.7	52 0.5	44

Strength is based on strain compatibility; bottom tension is limited to $7.5\sqrt{t_c^2}$; see pages 2–7 through 2–10 for explanation.

PCI Design Handbook/Sixth Edition

2-33

L-Shape Precast Beam

L-BEAMS

Normal Weight Concrete

St in.³ S_b3 wt h_1/h_2 A in.² h I in.⁴ Уb Designation plf in. in. in./in. in. 902 317 20LB20 12/8 304 10,160 8.74 1,163 20 12/12 384 17,568 10.50 1,673 1,301 400 24 20LB24 27,883 2,282 1,767 450 28 16/12 432 12.22 20LB28 41,600 14.00 500 2,971 2,311 20LB32 32 20/12 480 3,737 2,930 550 15.82 20LB36 36 24/12 528 59,119 3,608 633 40 24/16 608 81,282 17.47 4,653 20LB40 28/16 656 108,107 19.27 5,610 4,372 683 20LB44 44 140,133 21.09 6,645 5,208 733 32/16 704 20LB48 48 6,117 783 7,749 20LB52 52 36/16 752 177,752 22.94 7,095 833 24.80 8,926 20LB56 56 40/16 800 221,355 20LB60 60 44/16 848 271,332 26.68 10,170 8,143 883 1

Check local area for availability of other sizes. Safe loads shown include 50% superimposed dead load and 50% live load. 800 psi top 2.

tension has been allowed, therefore, additional top reinforcement is required. 3.

 $f_{pu} = 270,000 \text{ psi}$ 1/2 in. diameter low-relaxation strand Safe loads can be significantly increased by use of structural composite topping.

Key

6566 - Safe superimposed service load, plf.

0.3 - Estimated camber at erection, in.

0.1 - Estimated long-time camber, in.

Table of safe superimposed service load (plf) and cambers (in.)

Desia-	No.	v _s (end) in.									Spa	n, ft								
nation	Strand	y₅(center) in.	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
20LB20	98-S	2.44 2.44	6566 0.3 0.1	5131 0.4 0.2	4105 0.5 0.2	3345 0.6 0.2	2768 0.7 0.2	2318 0.8 0.2	1961 0.9 0.3	1674 1.0 0.3	1438 1.0 0.3	1243 1.1 0.3	1079 1.2 0.2							
20LB24	108-S	2.80 2.80	9577 0.3 0.1	7495 0.3 0.1	6006 0.4 0.1	4904 0.5 0.1	4066 0.5 0.1	3414 0.6 0.2	2896 0.7 0.2	2479 0.8 0.2	2137 0.9 0.2	1854 0.9 0.2	1617 1.0 0.1	1416 1.0 0.1	1244 1.1 0.1	1097 1.1 0.0	969 1.2 0.0	10.10	1110	000
20LB28	128-S	3.33 3.33			8228 0.4 0.1	6733 0.4 0.1	5596 0.5 0.2	4711 0.6 0.2	4009 0.6 0.2	3443 0.7 0.2	2979 0.8 0.2	2595 0.9 0.2	2273 0.9 0.2	2000 1.0 0.2	1768 1.1 0.2	1567 1.1 0.2	1394 1.2 0.1	1243 1.2 0.1	1110 1.2 0.0	992 1.3 0.0
20LB32	148-S	3.71 3.71				8942 0.4 0.1	7446 0.5 0.2	6281 0.5 0.2	5356 0.6 0.2	4611 0.7 0.2	4001 0.7 0.2	3495 0.8 0.2	3071 0.9 0.3	2712 1.0 0.3	2406 1.0 0.3	2143 1.1 0.2	1914 1.2 0.2	1715 1.2 0.2	1540 1.3 0.2	1386 1.3 0.1
20LB36	168-S	4.25 4.25					9457 0.4 0.2	7988 0.5 0.2	6823 0.5 0.2	5883 0.6 0.2	5113 0.7 0.2	4476 0.8 0.3	3941 0.8 0.3	3489 0.9 0.3	3103 1.0 0.3	2771 1.1 0.3	2483 1.1 0.3	2231 1.2 0.3	2011 1.2 0.3	1816 1.3 0.2
20LB40	188-S	4.89 4.89						9812 0.4 0.2	8386 0.5 0.2	7235 0.6 0.2	6293 0.6 0.2	5513 0.7 0.2	4858 0.8 0.2	4305 0.8 0.3	3832 0.9 0.3	3425 1.0 0.3	3073 1.0 0.3	2765 1.1 0.3	2495 1.1 0.3	1.2 0.3
20LB44	198-S	5.05 5.05								8959 0.5 0.2	7803 0.6 0.2	6845 0.6 0.2	6042 0.7 0.2	5363 0.8 0.2	4783 0.8 0.2	4284 0.9 0.2	3851 0.9 0.2	3474 1.0 0.2	3143 1.1 0.2	2850 1.1 0.2
20LB48	218-S	5.81 5.81									9226 0.5 0.2	8100 0.6 0.2	7158 0.6 0.2	6360 0.7 0.2	5678 0.8 0.2	5092 0.8 0.2	4584 0.9 0.3	4140 0.9 0.3	3751 1.0 0.3	3408 1.1 0.3
20LB52	238-S	6.17 6.17										9634 0.6 0.2	8521 0.6 0.2	7578 0.7 0.2	6774 0.7 0.3	6082 0.8 0.3	5482 0.9 0.3	4958 0.9 0.3	4499 1.0 0.3	4094 1.0 0.3
20LB56	258-S	6.64 6.64											9954 0.6 0.2	8860 0.7 0.2	7927 0.7 0.3	/124 0.8 0.3	6427 0.8 0.3	5820 0.9 0.3	5287 1.0 0.3	4816 1.0 0.3
20LB60	278-S	7.33 7.33													9089 0.7 0.3	8173 0.7 0.3	7380 0.8 0.3	6688 0.9 0.3	6080 0.9 0.3	5544 1.0 0.3

PCI Design Handbook/Sixth Edition

2 - 43

0

Normal Weight Concrete

Inverted T-Shape Precast Beam

INVERTED TEE BEAMS

8" 1'-0" 8" h₁ h h_2 2'-4"

		S	Section	Properti	ies			
Designation	h in.	h₁/h₂ in./in.	A in. ²	I in. ⁴	у₅ in.	S _b in. ³	S _t in. ³	wt plf
28IT20	20	12/8	368	11,688	7.91	1,478	967	383
28IT24	24	12/12	480	20,275	9.60	2,112	1,408	500
281728	28	16/12	528	32,076	11.09	2,892	1,897	550
28IT32	32	20/12	576	47,872	12.67	3,778	2,477	600
28IT36	36	24/12	624	68,101	14.31	4,759	3,140	650
28IT40	40	24/16	736	93,503	15.83	5,907	3,869	767
28IT44	44	28/16	784	124,437	17.43	7,139	4,683	817
28IT48	48	32/16	832	161,424	19.08	8,460	5,582	867
28IT52	52	36/16	880	204,884	20.76	9,869	6,558	917
28IT56	56	40/16	928	255,229	22.48	11,354	7,614	967
281760	60	44/16	976	312,866	24.23	12,912	8,747	1,017
(Ol - -	and and a fe	, eveilebil	ity of otho	r cizos				

 $f_{c}' = 5,000 \text{ psi}$ $f_{pu} = 270,000 \text{ psi}$

1/2 in. diameter

low-relaxation strand

Check local area for availability of other sizes. Safe loads shown include 50% superimposed dead load and 50% live load. 800 psi top tension has been allowed, therefore, additional top reinforcement is required. Safe loads can be significantly increased by use of structural composite topping. 2.

З.

Key 6511 – Safe superimposed service load, plf. 0.2 – Estimated camber at erection, in.

0.1 - Estimated long-time camber, in.

Table of safe superimposed service load (plf) and cambers (in.)

Desig-	No.	y₅(end) in.									Spa	n, ft								
nation	Strand	y₅(center) in.	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
28IT20	98-S	2.44 2.44	6511 0.2 0.1	5076 0.3 0.1	4049 0.4 0.1	3289 0.4 0.1	2711 0.5 0.1	2262 0.5 0.1	1905 0.6 0.0	1617 0.7 0.0	1381 0.7 0.0	1186 0.7 0.0	1022 0.8 -0.1	1051	1170	1000				
28IT24	188-S	2.73 2.73	9612 0.2 0.1	7504 0.3 0.1	5997 0.3 0.1	4882 0.4 0.1	4034 0.4 0.1	3374 0.5 0.1	2850 0.6 0.1	2427 0.6 0.1	2081 0.7 0.1	1795 0.7 0.1	1555 0.7 0.0	1351 0.8 0.0	0.8 -0.1	0.8	1050	1107	1061	
281728	138-S	3.08 3.08			8353 0.3 0.1	6822 0.3 0.1	5657 0.4 0.1	4750 0.5 0.1	4031 0.5 0.1	3451 0.6 0.1	2976 0.6 0.1	2582 0.7 0.1	2252 0.7 0.1	1973 0.8 0.1	0.8 0.0	0.8	0.9	0.8	0.8	1007
281732	158-S	3.47 3.47				9049 0.3 0.1	7521 0.4 0.1	5333 0.4 0.1	5389 0.5 0.1	4628 0.5 0.1	4006 0.6 0.1	3490 0.6 0.1	3057 0.7 0.1	2691 0.7 0.1	0.8 0.1	0.8	0.9	0.9	0.9	0.9
281T36	168-S	3.50 3.50					9832 0.3 0.1	8295 0.4 0.1	7075 0.4 0.1	6092 0.5 0.1	5287 0.5 0.1	4619 0.6 0.1	4060 0.6 0.1	3587 0.7 0.1	0.7 0.1	2835 0.8 0.1	2534 0.8 0.0	0.9	2040 0.9 0.0	0.9
28IT40	198-S	4.21 4.21							8638 0.4 0.1	7440 0.5 0.1	6460 0.5 0.1	5647 0.6 0.1	4966 0.6 0.1	4390 0.7 0.1	3898 0.7 0.1	0.8 0.1	0.8	0.8	0.9 0.1	0.9
28IT44	208-S	4.40 4.40								9186 0.4 0.1	7989 0.5 0.1	6997 0.5 0.1	6165 0.6 0.1	5462 0.6 0.1	4861 0.7 0.1	4344 0.7 0.1	0.7 0.1	0.8	0.8	2859 0.8 0.0
28IT48	228-S	4.55 4.55									9719 0.4 0.1	8525 0.5 0.1	7523 0.5 0.1	6676 0.6 0.1	5953 0.6 0.1	5330 0.7 0.1	4791 0.7 0.1	4320 0.8 0.1	0.8	0.9 0.1
28IT52	248-S	5.17 5.17										9987 0.5 0.1	8823 0.5 0.1	7838 0.6 0.1	0.6 0.1	6274 0.6 0.1	0.7 0.1	0.7 0.1	4619 0.8 0.1	4196 0.8 0.1
281756	268-S	5.23 5.23												9307 0.5 0.2	8319 0.6 0.2	7469 0.6 0.2	6731 0.7 0.2	6088 0.7 0.2	0.8 0.2	0.8
281760	288-S	5.57 5.57													9645 0.6 0.2	8668 0.6 0.2	7820 0.7 0.2	7081 0.7 0.2	6432 0.8 0.2	5859 0.8 0.2

PCI Design Handbook/Sixth Edition

Sample Load Calculations

Deflections for Non-Composite Steel Framing

Beam Deflection Summary

RAM Steel v11.0 DataBase: Non Composite Building Code: IBC

10/29/07 02:55:19 Steel Code: ASD 9th Ed.

STEEL BEAM DEFLECTION SUMMARY:

Floor Type: Third Floor

Noncor	nposite				
Bm #	Beam Size	Dead	Live	NetTotal	Camber
		in	in	in	in
9	W18X40	0.837	0.449	1.287	
10	W10X12	0.547	0.181	0.729	
98	W12X14	0.407	0.238	0.645	
97	W12X14	0.436	0.256	0.692	
96	W12X14	0.436	0.256	0.692	
95	W12X14	0.436	0.256	0.692	
64	W8X10	0.005	0.003	0.008	
14	W10X12	0.482	0.304	0.786	
66	W8X10	0.429	0.327	0.756	
8	W18X40	0.836	0.448	1.285	
15	W10X12	0.433	0.275	0.707	
94	W12X14	0.406	0.238	0.644	
93	W12X14	0.436	0.256	0.692	
92	W12X14	0.436	0.256	0.692	
91	W12X14	0.436	0.256	0.692	
2	W10X12	0.596	0.210	0.806	
17	W21X50	0.982	0.437	1.418	
11	W10X12	0.547	0.181	0.729	
102	W12X14	0.407	0.238	0.645	
101	W12X14	0.436	0.256	0.692	
100	W12X14	0.436	0.256	0.692	
99	W12X14	0.436	0.256	0.692	
6	W8X10	0.009	0.007	0.016	
13	W10X12	0.482	0.304	0.786	
65	W8X10	0.429	0.327	0.756	
3	W21X50	0.980	0.436	1.416	
16	W10X12	0.433	0.275	0.707	
90	W12X14	0.406	0.238	0.644	
89	W12X14	0.436	0.256	0.692	
88	W12X14	0.436	0.256	0.692	
87	W12X14	0.436	0.256	0.692	
1	W10X12	0.596	0.210	0.806	
12	W18X40	0.837	0.449	1.287	
5	W8X10	0.005	0.003	0.008	
4	W18X40	0.836	0.448	1.285	

Deflections for Composite Steel Framing

RAM Steel v11.0 DataBase: Composite Building Code: IBC

10/29/07 07:01:08 Steel Code: ASD 9th Ed.

STEEL BEAM DEFLECTION SUMMARY:

Floor Type: Third Floor

Composite / Unshored						
Bm #	Beam Size	Initial	PostLive	PostTotal	NetTotal	Camber
		in	in	in	in	in
9	W16X26	0.744	0.412	0.583	1.327	
10	W8X10	0.282	0.092	0.226	0.508	
98	W8X10	0.493	0.180	0.255	0.748	
97	W8X10	0.528	0.193	0.274	0.802	
96	W8X10	0.528	0.193	0.274	0.802	
95	W8X10	0.528	0.193	0.274	0.802	
64	W8X10	0.002	0.001	0.002	0.004	
14	W8X10	0.359	0.149	0.206	0.565	
66	W8X10	0.190	0.102	0.134	0.324	
8	W16X26	0.743	0.411	0.582	1.325	
15	W8X10	0.324	0.134	0.186	0.509	
94	W8X10	0.493	0.180	0.255	0.748	
93	W8X10	0.528	0.193	0.274	0.802	
92	W8X10	0.528	0.193	0.274	0.802	
91	W8X10	0.528	0.193	0.274	0.802	
2	W8X10	0.317	0.107	0.247	0.564	
17	W18X35	0.813	0.376	0.576	1.389	
11	W8X10	0.282	0.092	0.226	0.508	
102	W8X10	0.493	0.180	0.255	0.748	
101	W8X10	0.528	0.193	0.274	0.802	
100	W8X10	0.528	0.193	0.274	0.802	
99	W8X10	0.528	0.193	0.274	0.802	
6	W8X10	0.004	0.003	0.003	0.007	
13	W8X10	0.359	0.149	0.206	0.565	
65	W8X10	0.190	0.102	0.134	0.324	
3	W18X35	0.812	0.375	0.575	1.387	
16	W8X10	0.324	0.134	0.186	0.509	
90	W8X10	0.493	0.180	0.255	0.748	
89	W8X10	0.528	0.193	0.274	0.802	
88	W8X10	0.528	0.193	0.274	0.802	
87	W8X10	0.528	0.193	0.274	0.802	
1	W8X10	0.317	0.107	0.247	0.564	
12	W16X26	0.744	0.412	0.583	1.327	
5	W8X10	0.002	0.001	0.002	0.004	
4	W16X26	0.743	0.411	0.582	1.325	